www.whkt.net > 斐波那契数列通达信公式

斐波那契数列通达信公式

这个数列是由13世纪意大利斐波那契提出的的,故叫斐波那契数列.该数列由下面的递推关系决定:F0=0,F1=1 Fn+2=Fn + Fn+1(n>=0) 它的通项公式是 Fn=1/根号5{[(1+根号5)/2]的n次方-[(1-根号5)/2]的n次方}(n属于正整数)补

斐波那契数列的通项公式 斐波那契数列的通项比是黄金分割比:Xn=Fn+1/Fn=(Fn+Fn-1)/Fn=1+ Fn-1/Fn=1+1/Xn-1; 即有Xn=1+1/Xn-1;求极限,x=1+1/x; 解得x=(1+sqr(5))/2 而Fn/Fn+1=1/x=(sqr(5)-1)/2 这里用了极限的方法斐波那契数列的通项公式 Fn=[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 用无理数表示有理数!扩展资料 例如:解答过程 参考资料来源:搜狗百科-fibonacci斐波那契数列

由An=An-1+An-2设An-q*An-1=q(An-1-q*An-2)解得q=黄金分割比或其倒数 则Bn=An-An-1是首项为A2-A1,公比为q的等比数列.(最关键)再对n的奇偶分别进行计算. 后面的求解自然就简单了通项An=q的n次方与q的负n次方之和比上根号下5(或者q与q的倒数的和或2.236)

即斐波那契数列,“斐波那契数列”的发明者,是意大利数学家列昂纳多斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年.籍贯大概是比萨).他被人称作“比萨的列昂纳多”.1202年,他撰写了《珠算原理》(Liber A

它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】

斐波那契数列通项公式 f(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: x^2=x+1 解得 x1=(1+√5)/2, x2=(1-√5)/2. 则f(n)=c1*x1^n + c2*x2^n ∵f(1)=f(2)=1 ∴c1*x1 + c2*x2 c1*x1^2 + c2*

斐波那契数列:1,1,2,3,5,8,13,21…… 如果设F(n)为该数列的第n项(n∈N+).那么这句话可以写成如下形式: F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 显然这是一个线性递推数列. 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程

斐波那契数列:1、1、2、3、5、8、13、21、…… 如果设F(n)为该数列的第n项(n∈N+).那么这句话可以写成如下形式: F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 显然这是一个线性递推数列. 通项公式的推导方法一:利用特征方程

斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21…… 这个数列从第三项开始,每一项都等于前两项之和.它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(又叫“比内公式”,是用无理数表示有理数的一个范例.)【√5表示根号5】

通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3..)

友情链接:ldyk.net | gtbt.net | sgdd.net | qhgj.net | 4405.net | 网站地图

All rights reserved Powered by www.whkt.net

copyright ©right 2010-2021。
www.whkt.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com